INTRODUCTION

Since the Soils and Water Review of Davies et al. (1999) the treatment of Class 4 streams in the forestry estate has been the subject of further research and reviews supported by the Forest Practices Board (now the Forest Practices Authority). Publications include a thesis (Bunce 2000) and subsequent paper by Bunce and co-workers on the effects of pre-Code logging on high-altitude streams in granite terrain (Bunce et al. 2001), a review of actual prescriptions applied by foresters to Class 4 streams (McIntosh 2001), a report on stream risk assessment in northeast Tasmania (Wells 2002) and a new risk classification system (McIntosh and Laffan 2005). The last-mentioned paper includes the scientific justification and reasoning behind these guidelines.

PRINCIPLE

The new guidelines are based on the principle that the inherent erosion risk in the riparian zone is chiefly dependent on slope and soil erodibility. These two factors determine an ‘erosion hazard’ class. Each erosion hazard class requires an appropriate level of protection, which may be upgraded if ‘erosion features’ are noted.

BASIC OBSERVATIONS REQUIRED

To assess actual and potential risk to a Class 4 stream it is necessary to have the following information about the stream and its riparian zone:

- What is the maximum riparian slope?
- What is the soil erodibility in the riparian zone?
- Are ‘erosion features’ present?

To answer these questions a field inspection will normally be required, but it is unlikely that every stream present will need to be walked over its entire length. The more risky areas of the coupe, e.g. steeper slopes, any areas showing instability, or unusual soils (e.g. aeolian sands) should be inspected, as done at present. The tables in Step 1 provide an optional recording system which foresters may find useful for determining prescriptions on problematical streams.

1 For the purpose of these guidelines, the riparian zone is defined as the 0-10 m zone adjacent to the stream.
Slope
The maximum slope in the riparian zone (Figure 1) should be estimated or measured with a clinometer. Stream banks are not considered part of the riparian slope. The measured slope should cover a significant area in the riparian zone (e.g. a short slope a few metres long can be considered to be an inclusion, but if the stream flows through a steep-sided gully for 20% of its length the slopes on this gully should be recorded as the ‘maximum slopes’ for this stream). As a general rule, the measured maximum slope should cover at least 5-10% of the riparian zone, but FPOs should use their judgement to decide which slopes are significant.

Soil erodibility
Soil erodibility should be determined by correlating soils with those described in publications, including ‘Forest Soils of Tasmania’ (Grant et al. 1995a), Soils Bulletins 1, 2 and 3 (Laffan et al. 1995; Grant et al. 1995b; Hill et al. 1995), and the Forest Soil Fact Sheets (www.fpa.tas.gov.au). Alternatively, soil erodibility may be determined by Laffan’s field method (Laffan 2000) or by checking with the Soil and Water Specialist at the Forest Practices Authority.

Erosion hazard
From the riparian slope and soil erodibility, erosion hazard in the riparian zone is determined from the table in Step 2.

Erosion features (Figure 2)
For streams there are four categories:
- a channel > 4 m wide (W);
- recent boulder movement (R);
- near-vertical stream banks >1 m high (V);
- sediment accumulation (A).

In the riparian zone the categories are:
- landslides or slumps (L);
- sheet erosion (S);
- tunnel gully erosion (G).
It is considered that the presence of these features, alone or in combination, indicates that a Class 4 stream and its riparian zone are at greater risk of erosion than a stream and riparian zone without these features.

WORKING OUT PRESCRIPTIONS

From the determination of erosion hazard, and the record of erosion features, the appropriate prescriptions are worked out from the keys in Step 3. There are five prescriptions to choose from (Figure 3). Note that streams may be divided into reaches requiring different prescriptions: for example, a Class 4 stream that requires a 20 m streamside reserve in its upper (eroding) reach may be only require a standard machinery exclusion zone in its lower reach.

Figure 2A. A channel >4m wide (W) is considered to be an ‘erosion feature’ as it indicates that the stream may flow with considerable force at some time in the year. Meandering slow-moving streams flowing in organic-matter rich sediments in almost flat-bottomed gullies are excepted from the 4 m rule.
Figure 2B. Recent boulder movement (R). Where the stream bed contains boulders and these show signs of recent movement (i.e. they are not covered in algae or moss) the stream is designated as having the erosion feature R.

Figure 2C. Near-vertical stream banks >1 m high (V). The designation applies to both natural and man-made banks, e.g. those produced by sluicing or artificial deepening on the channel. Banks >1m high are often associated with 'step-pool' stream morphology, as illustrated in this figure.
Figure 2D. Sediment accumulation (A). The accumulation of erosion products indicates erosion upstream. Here sandy layers intercalated with layers of charcoal indicate periodic erosion and deposition, probably resulting from fires. In sandy or granitic country such erosion and deposition may be indicated by gullies with planar or flat bottoms – augering or digging may reveal buried layers.

Figure 2E. Landslides (L). A landslide has occurred at the head of this gully in soils derived from Permian rocks. There is also sheet erosion in the left foreground.
Figure 2F. Sheet erosion (S). Sheet erosion (combined with shallow slumps) in the riparian zone of a stream in Mathinna Beds terrain.

Figure 2F. Tunnel-gully erosion (G). Collapse of subsurface drainage channels causes the erosion feature called tunnel gully erosion. Such erosion usually occurs in sandy or silty soils that have moderate to high, high or very high erodibility.

(Subsurface drainage channels also occur in low erodibility soils such as those formed in basalt or dolerite, but the channels are generally stable and do not collapse to form steep-sided gullies, and for this reason subsurface drainage in dolerite and basalt terrain is generally not classified as tunnel-gully erosion.)
Figure 3. Prescriptions to be applied to Class 4 streams.

Figure 3.1. Standard Class 4 Machinery Exclusion Zone (MEZ) as defined in the Forest Practices Code (2000).

Figure 3.2. Extended Class 4 Machinery Exclusion Zone (MEZ). The 10 m wide zone is measured from where the steep (>19°) gully sides begin. The maximum width is 20 m.

Figure 3.3. Class 4 Streamside Reserve (SSR). A 10 m no-machinery and no-harvest zone is applied.
Figure 3.4. Extended Class 4 Streamside Reserve (SSR). The 10 m wide SSR is measured from where the steep (>19°) gully sides begin (commonly referred to as 'the break in slope'). The maximum streamside reserve width from the stream bank is 20 m.

Figure 3.5. A 20 m Streamside Reserve (SSR) is applied to the Class 4 stream.
STEP 1. Record stream characteristics (Circle options selected.)

<table>
<thead>
<tr>
<th>Coupe No.:</th>
<th>Class 4 stream I.D.</th>
<th>Steepest riparian slopes (must cover at least 5 – 10% of riparian zone)</th>
<th>deg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soil erodibility</td>
<td>Low</td>
<td>Mod.</td>
<td>Mod. to high</td>
</tr>
<tr>
<td>EROSION HAZARD CLASS (from Step 2)</td>
<td>A</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>EROSION FEATURES</td>
<td>Channel >4 m wide</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>Recent boulder movement</td>
<td>R</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Near-vertical stream banks >1m high</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sediment accumulation</td>
<td>A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Landslides or slumps</td>
<td>L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sheet erosion</td>
<td>S</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tunnel-gully erosion</td>
<td>G</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No erosion features</td>
<td>NIL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRESCRIPTION (from Step 3)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Coupe No.:</th>
<th>Class 4 stream I.D.</th>
<th>Steepest riparian slopes (must cover at least 5 – 10% of riparian zone)</th>
<th>deg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soil erodibility</td>
<td>Low</td>
<td>Mod.</td>
<td>Mod. to high</td>
</tr>
<tr>
<td>EROSION HAZARD CLASS (from Step 2)</td>
<td>A</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>EROSION FEATURES</td>
<td>Channel >4 m wide</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>Recent boulder movement</td>
<td>R</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Near-vertical stream banks >1m high</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sediment accumulation</td>
<td>A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Landslides or slumps</td>
<td>L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sheet erosion</td>
<td>S</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tunnel-gully erosion</td>
<td>G</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No erosion features</td>
<td>NIL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRESCRIPTION (from Step 3)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
STEP 2. Work out Erosion Hazard Class in the riparian zone (0–10 m).

Erosion hazard in relation to soil erodibility class and slope angle.
A = low erosion hazard;
B = moderate erosion hazard;
C = moderate to high erosion hazard;
D = high erosion hazard;
E = very high erosion hazard.

<table>
<thead>
<tr>
<th>Maximum slope in riparian zone*</th>
<th>Soil Erodibility Class</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Low</td>
</tr>
<tr>
<td><3º</td>
<td>A</td>
</tr>
<tr>
<td>3 - 8º</td>
<td>B</td>
</tr>
<tr>
<td>9 - 11º</td>
<td>B</td>
</tr>
<tr>
<td>12 - 14º</td>
<td>B</td>
</tr>
<tr>
<td>15 - 19º</td>
<td>C</td>
</tr>
<tr>
<td>20 - 26º</td>
<td>D</td>
</tr>
<tr>
<td>>26º</td>
<td>D</td>
</tr>
</tbody>
</table>

*Stream banks themselves are not included. Slopes must cover a significant area, e.g. at least 5-10% of the riparian zone (0-10 m).
Guidelines for the protection of class 4 streams

STEP 3. Starting from the erosion hazard classification, key out a prescription.

EROSION HAZARD A or B

- **Are “EROSION FEATURES” present?**
 - Yes: Consult with FPA Soil & Water Specialist
 - No: Apply standard 10 m MEZ (Fig. 3.1)

EROSION HAZARD C

- **Is the coupe (a) NATIVE FOREST or (b) PLANTATION?**
 - a: Are “EROSION FEATURES” present?
 - Yes: Apply a 20 m SSR (Fig. 3.5) or a 10 m SSR (Fig. 3.3) depending on erosion severity – consult FPA Soil and Water Specialist
 - No: Apply standard 10 m MEZ (Fig. 3.1)
 - b: Are “EROSION FEATURES” present?
 - Yes: Harvest generally OK; no future harvest in 0–10 m zone; encourage native regeneration in 0–10m zone
 - No: Harvest and replanting as per Code 2000

MEZ = Machinery exclusion zone; SSR = Streamside reserve
Guidelines for the protection of class 4 streams

EROSION HAZARD

Are "EROSION FEATURES" present?

Yes

Is the operation (a) ground-based native forest harvest, or (b) plantation or cable harvest?

a

Apply a 20 m SSR (Fig. 3.5) unless FPA Soil & Water Specialist recommends otherwise

b

Consult FPA Soil & Water specialist

No

Is the operation (a) ground-based native forest harvest, or (b) plantation or cable harvest?

a

Apply extended Class 4 MEZ (Fig. 3.2)

b

Apply 10 m SSR (Fig. 3.3)

Is soil erodibility (a) Low or Moderate or (b) Mod-High, High, or Very-High?

a

Is the operation (a) Ground-based or (b) Cable harvest?

b

Is soil erodibility (a) Low or Moderate or (b) Mod-High, High, or Very-High?

a

Harvest as per Code 2000

b

Harvest generally OK; no future harvest in 0–10 m zone; encourage native regeneration in 0–10 m zone

MEZ = Machinery exclusion zone; SSR = Streamside reserve
Guidelines for the protection of class 4 streams

EROSION HAZARD E

Are "EROSION FEATURES" present?

- **Yes**
 - Is the operation (a) ground-based native forest harvest, or (b) plantation or cable harvest?
 - **a**
 - Apply a 20 m SSR (Fig. 3.5)
 - **b**
 - Consult FPA Soil and Water Specialist

- **No**
 - Is the stream in a steep-sided gully?
 - **Yes**
 - Apply extended Class 4 SSR (Fig. 3.4)
 - **No**
 - Is the operation (a) ground-based, or (b) Cable harvest?
 - **a**
 - Harvest generally OK; no future harvest in 0–10 m zone; encourage native regeneration in 0–10 m zone
 - **b**
 - Is soil erodibility (a) Low or Moderate or (b) Mod-High, High, or Very-High?
 - **a**
 - Harvest as per Code 2000
 - **b**
 - Consult with FPA Soil & Water Specialist

MEZ = Machinery exclusion zone; SSR = Streamside reserve
REFERENCES

Bunce, SEH; McIntosh, PD; Davies, P and Cook, LSJ 2001 ‘Effects of pre-Code forest clearfelling on the geomorphology and sedimentology of headwater streams in upland granite terrain, Tasmania’, Proceedings of the Third Australian Stream Management Conference, 27–29 August, 2001, Brisbane, Queensland, pages 87-93. CRC for Catchment Hydrology, Melbourne.

Grant, J; Laffan, M; Hill, R; Neilsen, W 1995a, Forest Soils of Tasmania, Forestry Tasmania, Hobart.

Laffan, M; Grant, J; Hill, R 1995, Soils of Tasmanian State forests 1, Pipers Sheet, Soils Bulletin 1, Forestry Tasmania, Hobart.

Document Control Log Table

Document Summary Information

<table>
<thead>
<tr>
<th>Document name</th>
<th>Guidelines for the protection of class 4 streams</th>
</tr>
</thead>
<tbody>
<tr>
<td>Version</td>
<td>1.1</td>
</tr>
<tr>
<td>Trim record</td>
<td>2011/11506</td>
</tr>
<tr>
<td>Owner</td>
<td>Peter McIntosh</td>
</tr>
<tr>
<td>Author(s)</td>
<td>Peter McIntosh</td>
</tr>
<tr>
<td>Release date</td>
<td>06/05/2004</td>
</tr>
<tr>
<td>Release Approved by</td>
<td>CFPO and Board of the FPA</td>
</tr>
<tr>
<td>Release status</td>
<td>Public document</td>
</tr>
</tbody>
</table>

Version Control

<table>
<thead>
<tr>
<th>Version</th>
<th>Date</th>
<th>Author(s)</th>
<th>Summary of changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>06/05/2004</td>
<td>Peter McIntosh</td>
<td>Original document</td>
</tr>
<tr>
<td>1.1</td>
<td>31/01/2011</td>
<td>Peter McIntosh</td>
<td>Minor update. Added hardcopy warning and document control information.</td>
</tr>
</tbody>
</table>

Stages required for release outside FPA

<table>
<thead>
<tr>
<th>Category of advice</th>
<th>Required/not required</th>
<th>Completed (date)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specialist</td>
<td>Required</td>
<td>06/05/2004</td>
</tr>
<tr>
<td>Line Manager</td>
<td>Not required</td>
<td></td>
</tr>
<tr>
<td>Peer/FPO/stakeholder review</td>
<td>Required</td>
<td>06/05/2004</td>
</tr>
<tr>
<td>CFPO</td>
<td>Required</td>
<td>06/05/2004</td>
</tr>
<tr>
<td>FPAC</td>
<td>Required</td>
<td>06/05/2004</td>
</tr>
<tr>
<td>Board</td>
<td>Required</td>
<td>06/05/2004</td>
</tr>
</tbody>
</table>

6 May 2004; minor update 31 January 2011